Lecture Notes, Lecture 16

7.1 Existence of Equilibrium

$$
\begin{gathered}
P=\left\{p \mid p \in R^{N}, p_{k} \geq 0, k=1 \ldots, N, \sum_{k=1}^{N} p_{k}=1\right\} \\
\widetilde{Z}(p)=\sum_{i \in H} \widetilde{D}^{i}(p)-\sum_{j \in F} \widetilde{S}^{j}(p)-r \\
=\sum_{i \in H} x^{i}-\sum_{j \in F} y^{j}-r \quad, \text { where } x^{i} \text { is }
\end{gathered}
$$

household i's consumption plan, y^{j} is firm j's production plan and r is the resource endowment of the economy. $\widetilde{Z}(p)$ is the economy's excess demand function. Recall that all of the expressions in $\widetilde{Z}(p)$ are N -dimensional vectors.

Definition: $p^{0} \in P$ is said to be an equilibrium price vector if $\widetilde{Z}\left(p^{0}\right) \leq 0$ (the inequality holds co-ordinatewise) with $\mathrm{p}_{\mathrm{k}}{ }^{\mathrm{K}}$ $=0$ for k such that $\widetilde{Z}_{k}\left(p^{0}\right)<0$. That is, p^{0} is an equilibrium price vector if demand equals supply except for free goods, $\sum_{i \in H} \widetilde{D}^{i}\left(p^{0}\right) \leq \sum_{j \in F} \widetilde{S}^{j}\left(p^{0}\right)-r$.

Weak Walras' Law (Theorem 6.2): For all
$p \in P, p \cdot \widetilde{Z}(p) \leq 0$. For p such that $\mathrm{p} \cdot \widetilde{\mathrm{Z}}(\mathrm{p})<0$, there is $\mathrm{k}=$ $1,2, \ldots, N$, so that $\widetilde{Z}_{k}(p)>0$, assuming C.I - C.V, C.VII, C.VIII.

Continuity: $\tilde{Z}(p)$ is a continuous function, assuming P.II, P.III, P.V,P.VI and C.I-C.V, C.VII-C.VIII (Theorem 4.1, Theorem 5.2, Theorem 6.1).

Theorem 7.1: Assume P.II, P.III, P.V, P.VI, and C.I-C.V, CVII-C.VIII. There is $p^{*} \in P$ so that p^{*} is an equilibrium.

Proof: $T: P \rightarrow P$. For each k= 1,2,3, \ldots, N.

$$
T_{k}(p) \equiv \frac{p_{k}+\max \left[0, \widetilde{Z}_{k}(p)\right]}{1+\sum_{n=1}^{N} \max \left[0, \widetilde{Z}_{n}(p)\right]}=\frac{p_{k}+\max \left[0, \widetilde{Z}_{k}(p)\right]}{\sum_{n=1}^{N}\left\{p_{n}+\max \left[0, \widetilde{Z}_{n}(p)\right]\right\}}
$$

By the Brouwer fixed point theorem there is $p^{*} \in P$ So that $T\left(p^{*}\right)=p^{*}$. But then for all $\mathrm{k}=1, \ldots, \mathrm{~N}$,

$$
T_{k}\left(p_{k}^{*}\right)=p_{k}^{*}=\frac{p_{k}^{*}+\max \left[0, \widetilde{Z}_{k}\left(p^{*}\right)\right]}{1+\sum_{n=1}^{N} \max \left[0, \widetilde{Z}_{n}\left(p^{*}\right)\right]}
$$

Thus, either $p_{k}^{*}=0$ or

$$
p_{k}^{*}=\frac{p_{k}^{*}+\max \left[0, \widetilde{Z}_{k}\left(p^{*}\right)\right]}{1+\sum_{n=1}^{N} \max \left[0, \widetilde{Z}_{n}\left(p^{*}\right)\right]}>0
$$

Case 1: $p_{k}^{*}=0=\max \left[0, \widetilde{Z}_{k}\left(p^{*}\right)\right]$. Hence $\widetilde{Z}_{k}\left(p^{*}\right) \leq 0$.
$\underline{\text { Case 2: }} p_{k}^{*}=\frac{p_{k}^{*}+\max \left[0, \widetilde{Z}_{k}\left(p^{*}\right)\right]}{1+\sum_{n=1}^{N} \max \left[0, \widetilde{Z}_{n}\left(p^{*}\right)\right]}>0$
To avoid repeated tedious notation, let

$$
0<\alpha=\frac{1}{1+\sum_{n=1}^{N} \max \left[0, \widetilde{Z}_{n}\left(p^{*}\right)\right]} \leq 1 .
$$

We have

$$
\begin{aligned}
& p_{k}^{*}=\alpha p_{k}^{*}+\alpha \max \left[0, \widetilde{Z}_{k}\left(p^{*}\right)\right] \\
& (1-\alpha) p_{k}^{*}=\alpha \max \left[0, \widetilde{Z}_{k}\left(p^{*}\right)\right]
\end{aligned}
$$

Multiplying through by $\widetilde{Z}_{\mathrm{k}}\left(\mathrm{p}^{*}\right)$,
$\left(^{*}\right)(1-\alpha) p_{k}^{*} \widetilde{Z}_{k}\left(p^{*}\right)=\alpha\left(\max \left[0, \widetilde{Z}_{k}\left(p^{*}\right)\right]\right) \widetilde{Z}_{k}\left(p^{*}\right)$
Restating the Weak Walras' Law,

$$
\begin{aligned}
& 0 \geq p^{*} \cdot \widetilde{Z}\left(p^{*}\right)=\sum_{k \in \text { Case } 1} p_{k}^{*} \widetilde{Z}_{k}\left(p^{*}\right)+\sum_{k \in \text { Case } 2} p_{k}^{*} \widetilde{Z}_{k}\left(p^{*}\right) \\
& =0+\sum_{k \in \text { Case } 2} p_{k}^{*} \widetilde{Z}_{k}\left(p^{*}\right)=\sum_{k \in \text { Case } 2} p_{k}^{*} \widetilde{Z}_{k}\left(p^{*}\right)
\end{aligned}
$$

or

$$
0 \geq \sum_{k \in \text { Case } 2} p_{k}^{*} \widetilde{Z}_{k}\left(p^{*}\right)
$$

Multiplying through by (1- α), and substituting (*) we have

$$
\begin{gathered}
0 \geq(1-\alpha) \sum_{k \in \operatorname{Case} 2} p_{k}^{*} \widetilde{Z}_{k}\left(p^{*}\right) \\
=\alpha \sum_{k \in \text { Case } 2}\left(\max \left[0, \widetilde{Z}_{k}\left(p^{*}\right)\right]\right) \widetilde{Z}_{k}\left(p^{*}\right) .
\end{gathered}
$$

But this means that $\widetilde{Z}_{k}\left(p^{*}\right) \leq 0$, for all k in case 2.
But then, there is no k , either in case 1 or 2 , so that $\widetilde{Z}_{k}\left(p^{*}\right)$ >0. But the Weak Walras' Law says that if $\mathrm{p}^{*} \cdot \widetilde{Z}\left(p^{*}\right)<0$, it follows that there is k so that $\widetilde{\mathrm{Z}}_{k}\left(p^{*}\right)>0$. Hence we must have $\mathrm{p}^{*} \cdot \widetilde{\mathrm{Z}}\left(p^{*}\right)=0$. Thus for k so that $\widetilde{Z}_{k}\left(p^{*}\right)<0$, it follows that $p_{k}^{*}=0$. This completes the proof.
Q.E.D.

Theorem 7.1 is a proof of the consistency of the competitive model of chapters 4-7. It is possible to find prices, $\mathrm{p}^{*} \in \mathrm{P}$ so that competitive markets clear. When economists talk about competitive market prices finding their own level, they are not necessarily speaking vacuously. Under the hypotheses above, there is a competitive equilibrium price system.

Lemma 7.1: Assume P.II, P.III, P.V, P.VI, and C.I-C.V, CVII-C.VIII. Let p^{*} be an equilibrium. Then $\left|\widetilde{D}^{i}\left(p^{*}\right)\right|<\mathrm{c}$ ${ }^{w}$ where c is the bound on the Euclidean length of demand, $\widetilde{D}^{i}(p)$. Further, in equilibrium, Walras' Law holds as an equality, $\mathrm{p}^{*} \cdot \tilde{Z}\left(p^{*}\right)=0$.

Proof: Since $\widetilde{Z}\left(p^{*}\right) \leq 0$ (co-ordinatewise), we know that $\sum_{i \in H} \widetilde{D}^{i}\left(p^{*}\right) \leq \sum_{j \in F} \widetilde{S}^{j}\left(p^{*}\right)+\sum_{i \in H} r^{i}$, co-ordinatewise. But that implies that the aggregate consumption $\sum_{i \in H} \widetilde{D}^{i}\left(p^{*}\right)$ is attainable, so for each household i, $\left|\widetilde{D}^{i}\left(p^{*}\right)\right|<\mathrm{c}$ where c is the bound on demand, $\widetilde{D}^{i}(p)$.

We have for all $\mathrm{p}, \mathrm{p} \cdot \widetilde{Z}(\mathrm{p}) \leq 0$. In equilibrium, at p , we have $\widetilde{Z}\left(\mathrm{p}^{*}\right) \leq 0$ with $\mathrm{p}^{*}{ }_{\mathrm{k}}=0$ for k so that $\widetilde{Z_{\mathrm{k}}}\left(\mathrm{p}^{*}\right)<0$. Therefore $\mathrm{p}^{*} \cdot \bar{Z}\left(\mathrm{p}^{*}\right)=0$.

QED

